NJDOE MODEL CURRICULUM PROJECT CONTENT AREA: Mathematics GRADE: 8 UNIT #: 5 UNIT NAME: Statistics and Geometry | | STUDENT LEARNING OBJECTIVES | | CORRESPONDING CCSS | |---|---|--------|---| | 1 | Using a linear equation to model real life problems then solve it by interpreting the meaning of the slope and the intercept. | 8.SP.3 | Use the equation of a linear model to solve problems in the context of bivariate data interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. | | 2 | Construct and interpret scatter plots for bivariate measurement data and identify and interpret data patterns (clustering, outliers, positive or negative | 8.SP.1 | Construct and interpret scatter plot for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. | | | association, possible lines of best fit, and nonlinear association). | | Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. | | 3 | Construct frequency/relative frequency tables to analyze and describe possible associations between two variables. | 8.SP.4 | Understand the patterns of association can also be seen in bivariate categorical data by displaying the frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores? | | 4 | Know and apply the appropriate formula for the volume of a cone, a cylinder, or a sphere to solve real-world and mathematical problems. | 8.G.9 | Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems. | Major Content Supporting Content Additional Content (Identified by PARCC Model Content Frameworks). Bold type indicates grade level fluency requirements. (Identified by PARCC Model Content Frameworks). ## **Selected Opportunities for Connection to Mathematical Practices** - 1. Make sense of problems and persevere in solving them. - SLO 4 Involve problems that must be constructed and deconstructed in order to solve. - 2. Reason abstractly and quantitatively. - 3. Construct viable arguments and critique the reasoning of others. - 4. Model with mathematics. - SLOs 1, 2 and 3 Use equations, scatter plots, and frequency tables to model relationships between real-world quantities. - 5. Use appropriate tools strategically. - 6. Attend to precision. - 7. Look for and make use of structure. - 8. Look for and express regularity in repeated reasoning. All of the content presented at this grade level has connections to the standards for mathematical practices. Bold type identifies possible starting points for connections to the SLOs in this unit. # **Greater Brunswick Charter School Curriculum** | | Grade Level: 8 | | | Subject: Math | | Unit # | Unit # 5 | | |-----|------------------------|------|--|--|--------------------------|--|------------------------|--| | _ | m • | GT O | Learning | Essential | Essential Suggested Stud | | D 111 D | | | Day | Topic | SLO | Objectives | Questions | Whole Group | Small Group | Possible Resources | | | 1 | Readiness for unit | | To determine the level of readiness of students | Do I know enough
to begin this unit? | | Vocabulary review Independent practice Intervention for strugglers i-Ready | Glencoe Math p.660-662 | | | 2 | Plotting relationships | 2 | To view a relationship between two data sets by using a coordinate plane graph | How can I use a graph to see data trends? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.663-664 | | | 3 | Scatter plots | 2 | To plot points from
two sets of data and
discern a
relationship | How do patterns demonstrate trends? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.665-670 | | | 4 | Scatter plots | 2 | To plot points from
two sets of data and
discern a
relationship | How do patterns demonstrate trends? | | Detailed homework review Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.671-673 | | | 5 | Line of best fit | 1, 2 | To discover the line of best fit from common sense | How does the line of
best fit help me
predict a trend? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.675-676 | | | 6 | Line of best fit | 1, 2 | To determine a value from a relationship using a line of best fit | How does the line of
best fit help me
predict a trend? | | Detailed homework
review Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.677-680 | | | 7 | Line of best fit | 1, 2 | To determine a value from a relationship using a line of best fit | How does the line of
best fit help me
predict a trend? | | Detailed homework
review Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.680-683 | | | | Grade Level: 8 | | | Subject: Math | | Unit # 5 | | |-----|--|------|---|--|---|--|---| | Day | Topic | SLO | Learning | Essential | Suggested Stu | dent Activities | Possible Resources | | 8 | Scatter plots in technology | 1, 2 | To use a calculator
to construct a scatter
plot and determine a
line of best fit | Does a calculator
help me do this
faster? | This is optional but discussing the correlation coefficient has some lasting value. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.685-688 | | 9 | Scatter plotsLine of best fit | 1, 2 | | | | Independent practice Intervention for strugglers i-Ready | KhanAcademy Scatter Plots MathIsFun ScatterPlots Illuminations LineofBestFit KhanAcademy LineofBestFit Engage NY module | | 10 | Scatter plots Line of best fit | | | | | Review Assessment | | | 11 | Relative
frequency | 3 | To interpret relative frequencies | How do I determine
patterns using data
comparing two
quantities | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.689-694 | | 12 | Relative
frequency | 3 | To interpret relative frequencies | How do I determine
patterns using data
comparing two
quantities | | Detailed homework
review Independent practice Intervention/Enrichment i-Ready | • Glencoe Math p.695 | | 13 | Scatter Plots
and Lines of
best fit | 2 | To solve real-life situations using new plotting skills | How can I use
graphs to help
figure out a real
situation? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.697-699 | | 14 | Review of
measures of
central tendency | NA | To compute five
measures of central
tendency | Do I remember
mean, median,
mode, quartiles, box
plots, etc? | Take an extra day if they don't. If they can't do mean and quartiles, deviation is going to be a big stumble. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.701-707 | | | Grade Level: 8 | | | Subject: Math | | Unit # 5 | | |-----|--|---------|--|---|--|--|---| | Day | Topic | SLO | Learning | Essential | Suggested Stud | dent Activities | Possible Resources | | 15 | Mean Absolute DeviationStandard Deviation | NA | To compute the mean absolute deviation To identify data within a standard deviation | How do I compute
the mean absolute
deviation? What does the
standard
deviation actually
tell me? | Neither of these are in the Model
Curriculum. However, standard
deviation is often mentioned in a
lot of contexts. There is no harm
in helping students understand
what it is intended to show. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.709-713 MAD worksheet | | 16 | Mean Absolute DeviationStandard Deviation | NA | To compute the mean absolute deviation To identify data within a standard deviation | How do I compute
the mean absolute
deviation? What does the
standard
deviation actually
tell me? | These lessons do not ask students to compute the standard deviation – only to use it. | Detailed homework
review Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.715 | | 17 | Describing data distributions | NA | To identify key
characteristics in a
graph of data | What do some characterisitics of data tell me? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.717-724 | | 18 | Relative
frequency
Mean absolute
deviation | 1, 2, 3 | | | | Independent practiceIntervention for strugglersi-Ready | MathIsFun RelativeFrequency Mathway RelativeFrequency KhanAcademy TwoWayTables MAD worksheets | | 18 | Relative
frequency
Mean absolute
deviation | | | | | • Review • Assessment | Glencoe Math p. | | 19 | Content readiness | | To determine prior knowledge | How much do I
know about cones,
cylinders, spheres
and their volumes? | | Independent practiceIntervention/Enrichmenti-Ready | Glencoe Math p.584-586 | | 20 | Definitions of conic sections | 4 | To determine the characteristics of a conic section | How is a cone, cylinder, and sphere made? | In high school, with any rigor,
they'll hear about conic
sections. You may as well show
them why they're called that. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.587-588 | | | Grade Level: 8 | | | Subject: Math | | Unit # 5 | | |-----|--|-----|--|---|---|--|--| | Day | Topic | SLO | Learning | Essential | Suggested Stud | dent Activities | Possible Resources | | 21 | Volume of a cylinder | 4 | To calculate the volume of a cylinder | Why would I need to know the volume of a cylinder? | Compare the formula for a volume of a cylinder to the formula for the volume of a rectangular prism standing on its end. Then it won't seem like a new formula. It's still the area of the base multiplied by the height, It's just a different base. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.589-594 | | 22 | Volume of a cylinder | 4 | To calculate the volume of a composite solid that includes a cylinder | What real world
shapes have
volumes I can
calculate? | Make up a lot of composite figures for the speedier learners. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.595-596 Page 2 problems | | 23 | Volume of a cone | 4 | To calculate the volume of a cone | How is a cone like a pyramid? | Compare the formula for a volume of a cone to the formula for the volume of a pyramid. Then it won't seem like a new formula. It's still the area of the base multiplied by 1/3 of the height, It's just a different base. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.597-604 | | 24 | Volume of a sphere | 4 | To calculate the volume of a sphere | How much can I put into a hollow ball? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.605-612 | | 25 | Volumes of cones, cylinders, and spheres | 4 | To calculate the volume of composite figure made of these and prisms. | How do figures fit together? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Sheet 1, Sheet 2, Sheet 3 | | 26 | Composite figures in real life | 4 | To solve real world
problems involving
composite figure
volumes | When will I use these skills? | | Lesson & Guided practiceIndependent practiceIntervention/Enrichmenti-Ready | Glencoe Math p.613-615 | | 27 | Volumes of cones, cylinders, and spheres | 4 | To compute the volume of conic sections | Do I know how to do this well enough? | | Independent practice Intervention/Enrichment i-Ready | All the volume
computation worksheets
you could want | | | Grade Level: 8 | | | S | ubject: Math | Unit # 5 | | | |-----|--|-----|--|--|--|--|------------------------|--| | Day | Topic | SLO | Learning | Essential | Suggested Stud | dent Activities | Possible Resources | | | 28 | Volumes of cones, cylinders, and spheres | 4 | | | | Review Assessment | | | | 29 | Unwrapping a figure | NA | To unwrap figures to see the surface area. | What does it look
like when I cut apart
of figure and lay it
out flat? | The rest of the chapter is not in
the Model Curriculum. You
have time and it is interesting
content. So, you may as well use
it. | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.617-618 | | | 30 | Surface area of
a cylinder | NA | To compute the total area of the surfaces of a cylinder | How much material does it take to make a can? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.619-626 | | | 31 | Nets of cones | NA | To determine how
to find the area
around a cone's
surface | How much like a circle is a cone if I lay it out flat? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.627-630 | | | 32 | Surface area of a cone | NA | To compute the total area of the surfaces of a cone | What is the best
shape for a cone
with an amount of
material to get me
the most ice cream? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.631-638 | | | 33 | Changes in scale | NA | To determine the change in volume when linear dimensions of a figure are changed | What is the relationship between a linear change and a threedimensional change? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.639-640 | | | 34 | Changes in dimension | NA | To calculate new volume when dimension changes are made | What is the relationship between a linear change and a threedimensional change? | | Lesson & Guided practice Independent practice Intervention/Enrichment i-Ready | Glencoe Math p.641-647 | | | 35 | Surface area | NA | To calculate the surface area of conic sections | | | Independent practice Intervention/Enrichment i-Ready | | | | Grade Level: 8 | | | 3 | Subject: Math | | Unit # | Unit # 5 | | |----------------|--------------|-----|----------|---------------|------------------------------|---|--------------------|--| | Day | Topic | SLO | Learning | Essential | Suggested Student Activities | | Possible Resources | | | 36 | Surface area | NA | | | | ReviewAssessment | | | ### Word Wall Candidates Qualitative data Quantitative data Distribution Two way table Five number summary Line of best fit Symmetric Scatter Plot Relative frequency Standard Deviation Mean Absolute Deviation Bivariate data Univariate data Composite solid Cone Cylinder Sphere Volume ### Authentic Application Your goal: To find the composite figure that uses the least material while holding a specified volume of a product. Your role: Member of a team. Your audience: The members of the class. The situation: Your team must select two figures to combine into a composite figure. Select one of the following volumes for your composite figure to hold: 10 in³, 20 in³, 25 in³, or 30 in³ Find or calculate the figure that will hold the amount of material (volume) you've chosen your figure to hold while using the least amount of material (surface area) to make the composite figure. Construct the composite figure from construction paper. Use a different color for each part of your composite figure. Your Product: Proof that the dimensions of your figure require the least amount of material for the volume it will hold. The neatly completed construction of your composite figure. Success Criteria: Scoring rubric: | | 4 points | 3 points | 2 points | 1 point | |--------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------| | Calculation | The composite figure uses the | The composite figure uses the | The composite figure doesn't | The composite figure doesn't | | | least required material | least required material but it | use the least required material. | use the least required material | | | | doesn't fit together well | | and It doesn't fit together well | | Construction | The construction is done very | | | The construction is done very | | | neatly and the colors are well | < | > | poorly and it is monochrome. | | | selected. | | | |